13 research outputs found

    A block-based background model for moving object detection

    Get PDF
    Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, the absolute difference between the background frame and each frame of sequence is computed. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficac

    Digital Agriculture and Intelligent Farming Business Using Information and Communication Technology: A Survey

    Get PDF
    Adopting new information and communication technology (ICT) as a solution to achieve food security becomes more urgent than before, particularly with the demographical explosion. In this survey, we analyze the literature in the last decade to examine the existing fog/edge computing architectures adapted for the smart farming domain and identify the most relevant challenges resulting from the integration of IoT and fog/edge computing platforms. On the other hand, we describe the status of Blockchain usage in intelligent farming as well as the most challenges this promising topic is facing. The relevant recommendations and researches needed in Blockchain topic to enhance intelligent farming sustainability are also highlighted. It is found through the examination that the adoption of ICT in the various farming processes helps to increase productivity with low efforts and costs. Several challenges are faced when implementing such solutions, they are mainly related to the technological development, energy consumption, and the complexity of the environments where the solutions are implemented. Despite these constraints, it is certain that shortly several farming businesses will heavily invest to introduce more intelligence into their management methods. Furthermore, the use of sophisticated deep learning and Blockchain algorithms may contribute to the resolution of many recent farming issues

    Brain Tumor Segmentation Based on Deep Learning’s Feature Representation

    No full text
    Brain tumor is considered as one of the most serious causes of death in the world. Thus, it is very important to detect it as early as possible. In order to predict and segment the tumor, many approaches have been proposed. However, they suffer from different problems such as the necessity of the intervention of a specialist, the long required run-time and the choice of the appropriate feature extractor. To address these issues, we proposed an approach based on convolution neural network architecture aiming at predicting and segmenting simultaneously a cerebral tumor. The proposal was divided into two phases. Firstly, aiming at avoiding the use of the labeled image that implies a subject intervention of the specialist, we used a simple binary annotation that reflects the existence of the tumor or not. Secondly, the prepared image data were fed into our deep learning model in which the final classification was obtained; if the classification indicated the existence of the tumor, the brain tumor was segmented based on the feature representations generated by the convolutional neural network architectures. The proposed method was trained on the BraTS 2017 dataset with different types of gliomas. The achieved results show the performance of the proposed approach in terms of accuracy, precision, recall and Dice similarity coefficient. Our model showed an accuracy of 91% in tumor classification and a Dice similarity coefficient of 82.35% in tumor segmentation

    A block-based background model for moving object detection

    Get PDF
    Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, the absolute difference between the background frame and each frame of sequence is computed. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficac

    A block-based background model for moving object detection

    No full text
    Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, the absolute difference between the background frame and each frame of sequence is computed. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficac

    Multimodal Emotional Classification Based on Meaningful Learning

    No full text
    Emotion recognition has become one of the most researched subjects in the scientific community, especially in the human–computer interface field. Decades of scientific research have been conducted on unimodal emotion analysis, whereas recent contributions concentrate on multimodal emotion recognition. These efforts have achieved great success in terms of accuracy in diverse areas of Deep Learning applications. To achieve better performance for multimodal emotion recognition systems, we exploit Meaningful Neural Network Effectiveness to enable emotion prediction during a conversation. Using the text and the audio modalities, we proposed feature extraction methods based on Deep Learning. Then, the bimodal modality that is created following the fusion of the text and audio features is used. The feature vectors from these three modalities are assigned to feed a Meaningful Neural Network to separately learn each characteristic. Its architecture consists of a set of neurons for each component of the input vector before combining them all together in the last layer. Our model was evaluated on a multimodal and multiparty dataset for emotion recognition in conversation MELD. The proposed approach reached an accuracy of 86.69%, which significantly outperforms all current multimodal systems. To sum up, several evaluation techniques applied to our work demonstrate the robustness and superiority of our model over other state-of-the-art MELD models

    Multimodal Emotional Classification Based on Meaningful Learning

    No full text
    Emotion recognition has become one of the most researched subjects in the scientific community, especially in the human–computer interface field. Decades of scientific research have been conducted on unimodal emotion analysis, whereas recent contributions concentrate on multimodal emotion recognition. These efforts have achieved great success in terms of accuracy in diverse areas of Deep Learning applications. To achieve better performance for multimodal emotion recognition systems, we exploit Meaningful Neural Network Effectiveness to enable emotion prediction during a conversation. Using the text and the audio modalities, we proposed feature extraction methods based on Deep Learning. Then, the bimodal modality that is created following the fusion of the text and audio features is used. The feature vectors from these three modalities are assigned to feed a Meaningful Neural Network to separately learn each characteristic. Its architecture consists of a set of neurons for each component of the input vector before combining them all together in the last layer. Our model was evaluated on a multimodal and multiparty dataset for emotion recognition in conversation MELD. The proposed approach reached an accuracy of 86.69%, which significantly outperforms all current multimodal systems. To sum up, several evaluation techniques applied to our work demonstrate the robustness and superiority of our model over other state-of-the-art MELD models

    Attention Mechanism and Support Vector Machine for Image-Based E-Mail Spam Filtering

    No full text
    Spammers have created a new kind of electronic mail (e-mail) called image-based spam to bypass text-based spam filters. Unfortunately, these images contain harmful links that can infect the user’s computer system and take a long time to be deleted, which can hamper users’ productivity and security. In this paper, a hybrid deep neural network architecture is suggested to address this problem. It is based on the convolution neural network (CNN), which has been enhanced with the convolutional block attention module (CBAM). Initially, CNN enhanced with CBAM is used to extract the most crucial information from each image-based e-mail. Then, the generated feature vectors are fed to the support vector machine (SVM) model to classify them as either spam or ham. Four datasets—including Image Spam Hunter (ISH), Annadatha, Chavda Approach 1, and Chavda Approach 2—are used in the experiments. The obtained results demonstrated that in terms of accuracy, our model exceeds the existing state-of-the-art methods

    MMPC-RF: A Deep Multimodal Feature-Level Fusion Architecture for Hybrid Spam E-mail Detection

    No full text
    Hybrid spam is an undesirable e-mail (electronic mail) that contains both image and text parts. It is more harmful and complex as compared to image-based and text-based spam e-mail. Thus, an efficient and intelligent approach is required to distinguish between spam and ham. To our knowledge, a small number of studies have been aimed at detecting hybrid spam e-mails. Most of these multimodal architectures adopted the decision-level fusion method, whereby the classification scores of each modality were concatenated and fed to another classification model to make a final decision. Unfortunately, this method not only demands many learning steps, but it also loses correlation in mixed feature space. In this paper, we propose a deep multimodal feature-level fusion architecture that concatenates two embedding vectors to have a strong representation of e-mails and increase the performance of the classification. The paragraph vector distributed bag of words (PV-DBOW) and the convolutional neural network (CNN) were used as feature extraction techniques for text and image parts, respectively, of the same e-mail. The extracted feature vectors were concatenated and fed to the random forest (RF) model to classify a hybrid e-mail as either spam or ham. The experiments were conducted on three hybrid datasets made using three publicly available corpora: Enron, Dredze, and TREC 2007. According to the obtained results, the proposed model provides a higher accuracy of 99.16% compared to recent state-of-the-art methods
    corecore